extension | φ:Q→Aut N | d | ρ | Label | ID |
C22.1(Q8⋊2S3) = Dic12.C4 | φ: Q8⋊2S3/C3⋊C8 → C2 ⊆ Aut C22 | 96 | 4 | C2^2.1(Q8:2S3) | 192,56 |
C22.2(Q8⋊2S3) = C24.6Q8 | φ: Q8⋊2S3/D12 → C2 ⊆ Aut C22 | 48 | 4 | C2^2.2(Q8:2S3) | 192,53 |
C22.3(Q8⋊2S3) = D24.C4 | φ: Q8⋊2S3/D12 → C2 ⊆ Aut C22 | 48 | 4+ | C2^2.3(Q8:2S3) | 192,54 |
C22.4(Q8⋊2S3) = C24.8D4 | φ: Q8⋊2S3/D12 → C2 ⊆ Aut C22 | 96 | 4- | C2^2.4(Q8:2S3) | 192,55 |
C22.5(Q8⋊2S3) = (C6×Q8)⋊C4 | φ: Q8⋊2S3/D12 → C2 ⊆ Aut C22 | 48 | | C2^2.5(Q8:2S3) | 192,97 |
C22.6(Q8⋊2S3) = (C2×Q8).49D6 | φ: Q8⋊2S3/D12 → C2 ⊆ Aut C22 | 96 | | C2^2.6(Q8:2S3) | 192,602 |
C22.7(Q8⋊2S3) = C6.C4≀C2 | φ: Q8⋊2S3/C3×Q8 → C2 ⊆ Aut C22 | 48 | | C2^2.7(Q8:2S3) | 192,10 |
C22.8(Q8⋊2S3) = C4⋊C4.228D6 | φ: Q8⋊2S3/C3×Q8 → C2 ⊆ Aut C22 | 96 | | C2^2.8(Q8:2S3) | 192,527 |
C22.9(Q8⋊2S3) = C12.C42 | central extension (φ=1) | 192 | | C2^2.9(Q8:2S3) | 192,88 |
C22.10(Q8⋊2S3) = C2×C12.Q8 | central extension (φ=1) | 192 | | C2^2.10(Q8:2S3) | 192,522 |
C22.11(Q8⋊2S3) = C2×C6.D8 | central extension (φ=1) | 96 | | C2^2.11(Q8:2S3) | 192,524 |
C22.12(Q8⋊2S3) = C2×Q8⋊2Dic3 | central extension (φ=1) | 192 | | C2^2.12(Q8:2S3) | 192,783 |