Extensions 1→N→G→Q→1 with N=C22 and Q=Q82S3

Direct product G=N×Q with N=C22 and Q=Q82S3
dρLabelID
C22×Q82S396C2^2xQ8:2S3192,1366

Semidirect products G=N:Q with N=C22 and Q=Q82S3
extensionφ:Q→Aut NdρLabelID
C22⋊(Q82S3) = Q83S4φ: Q82S3/Q8S3 ⊆ Aut C22246C2^2:(Q8:2S3)192,976
C222(Q82S3) = C3⋊C824D4φ: Q82S3/C3⋊C8C2 ⊆ Aut C2296C2^2:2(Q8:2S3)192,607
C223(Q82S3) = D12.36D4φ: Q82S3/D12C2 ⊆ Aut C2248C2^2:3(Q8:2S3)192,605
C224(Q82S3) = (C3×Q8)⋊13D4φ: Q82S3/C3×Q8C2 ⊆ Aut C2296C2^2:4(Q8:2S3)192,786

Non-split extensions G=N.Q with N=C22 and Q=Q82S3
extensionφ:Q→Aut NdρLabelID
C22.1(Q82S3) = Dic12.C4φ: Q82S3/C3⋊C8C2 ⊆ Aut C22964C2^2.1(Q8:2S3)192,56
C22.2(Q82S3) = C24.6Q8φ: Q82S3/D12C2 ⊆ Aut C22484C2^2.2(Q8:2S3)192,53
C22.3(Q82S3) = D24.C4φ: Q82S3/D12C2 ⊆ Aut C22484+C2^2.3(Q8:2S3)192,54
C22.4(Q82S3) = C24.8D4φ: Q82S3/D12C2 ⊆ Aut C22964-C2^2.4(Q8:2S3)192,55
C22.5(Q82S3) = (C6×Q8)⋊C4φ: Q82S3/D12C2 ⊆ Aut C2248C2^2.5(Q8:2S3)192,97
C22.6(Q82S3) = (C2×Q8).49D6φ: Q82S3/D12C2 ⊆ Aut C2296C2^2.6(Q8:2S3)192,602
C22.7(Q82S3) = C6.C4≀C2φ: Q82S3/C3×Q8C2 ⊆ Aut C2248C2^2.7(Q8:2S3)192,10
C22.8(Q82S3) = C4⋊C4.228D6φ: Q82S3/C3×Q8C2 ⊆ Aut C2296C2^2.8(Q8:2S3)192,527
C22.9(Q82S3) = C12.C42central extension (φ=1)192C2^2.9(Q8:2S3)192,88
C22.10(Q82S3) = C2×C12.Q8central extension (φ=1)192C2^2.10(Q8:2S3)192,522
C22.11(Q82S3) = C2×C6.D8central extension (φ=1)96C2^2.11(Q8:2S3)192,524
C22.12(Q82S3) = C2×Q82Dic3central extension (φ=1)192C2^2.12(Q8:2S3)192,783

׿
×
𝔽